miércoles, 22 de febrero de 2012

Cable Coaxial


Hubo un tiempo donde el cable coaxial fue el más utilizado. Existían dos importantes razones para la utilización de este cable: era relativamente barato, y era ligero, flexible y sencillo de manejar.

Un cable coaxial consta de un núcleo de hilo de cobre rodeado por un aislante, un apantallamiento de metal trenzado y una cubierta externa.

El término apantallamiento hace referencia al trenzado o malla de metal (u otro material) que rodea algunos tipos de cable. El apantallamiento protege los datos transmitidos absorbiendo las señales electrónicas espurias, llamadas ruido, de forma que no pasan por el cable y no distorsionan los datos. Al cable que contiene una lámina aislante y una capa de apantallamiento de metal trenzado se le denomina cable apantallado doble. Para entornos que están sometidos a grandes interferencias, se encuentra disponible un apantallamiento cuádruple. Este apantallamiento consta de dos láminas aislantes, y dos capas de apantallamiento de metal trenzado, El núcleo de un cable coaxial transporta señales electrónicas que forman los datos. Este núcleo puede ser sólido o de hilos. Si el núcleo es sólido, normalmente es de cobre.

Rodeando al núcleo hay una capa aislante dieléctrica que la separa de la malla de hilo. La malla de hilo trenzada actúa como masa, y protege al núcleo del ruido eléctrico y de la intermodulación (la intermodulación es la señal que sale de un hilo adyacente).


El núcleo de conducción y la malla de hilos deben estar separados uno del otro. Si llegaran a tocarse, el cable experimentaría un cortocircuito, y el ruido o las señales que se encuentren perdidas en la malla circularían por el hilo de cobre. Un cortocircuito eléctrico ocurre cuando dos hilos de conducción o un hilo y una tierra se ponen en contacto. Este contacto causa un flujo directo de corriente (o datos) en un camino no deseado. En el caso de una instalación eléctrica común, un cortocircuito causará el chispazo y el fundido de un fusible o del interruptor automático. Con dispositivos electrónicos que utilizan bajos voltajes, el resultado no es tan dramático, y a menudo casi no se detecta. Estos cortocircuitos de bajo voltaje generalmente causan un fallo en el dispositivo y lo habitual es que se pierdan los datos.

La malla de hilos protectora absorbe las señales electrónicas perdidas, de forma que no afecten a los datos que se envían a través del cable de cobre interno. Por esta razón, el cable coaxial es una buena opción para grandes distancias y para soportar de forma fiable grandes cantidades de datos con un equipamiento poco sofisticado.

Por ultimo, hay una cubierta exterior no conductora (normalmente hecha de goma, Teflón o plástico) rodea todo el cable y cubre la malla de hilos de metal.


Tipos de Cable Coaxial


Hay dos tipos de cable coaxial:


Cable Thinnet (Ethernet fino)


El cable coaxial Thinnet puede transportar una señal hasta una distancia aproximada de 185 metros (unos 607 pies) antes de que la señal comience a sufrir atenuación.

Los fabricantes de cables han acordado denominaciones específicas para los diferentes tipos de cables. El cable Thinnet está incluido en un grupo que se denomina la familia RG-58 y tiene una impedancia de 50 ohm. (La impedancia es la resistencia, medida en ohmios, a la corriente alterna que circula en un hilo.)

La característica principal de la familia RG-58 es el núcleo central de cobre y los diferentes tipos de cable de esta familia son:

•RG-58/U: Núcleo de cobre sólido.

•RG-58 A/U: Núcleo de hilos trenzados.

•RG-58 C/U: Especificación militar de RG-58 A/U.

•RG-59: Transmisión en banda ancha, como el cable de televisión.

•RG-60: Mayor diámetro y considerado para frecuencias más altas que RG-59, pero también utilizado para transmisiones de banda ancha.

•RG-62: Redes ARCnet.


El cable Thinnet es un cable coaxial flexible de unos 0,64 centímetros de grueso (0,25 pulgadas). Este tipo de cable se puede utilizar para la mayoría de los tipos de instalaciones de redes, ya que es un cable flexible y fácil de manejar.


Cable Thicknet (Ethernet grueso)


El cable Thicknet es un cable coaxial relativamente rígido de aproximadamente 1,27 centímetros de diámetro. Al cable Thicknet a veces se le denomina Ethernet estándar debido a que fue el primer tipo de cable utilizado con la conocida arquitectura de red Ethernet. El núcleo de cobre del cable Thicknet es más grueso que el del cable Thinnet.


Cuanto mayor sea el grosor del núcleo de cobre, más lejos puede transportar las señales. El cable Thicknet puede llevar una señal a 500 metros. Por tanto, debido a la capacidad de Thicknet para poder soportar transferencia de datos a distancias mayores, a veces se utiliza como enlace central o backbone para conectar varias redes más pequeñas basadas en Thinnet.

Un transceiver conecta el cable coaxial Thinnet a un cable coaxial Thicknet mayor. Un transceiver diseñado para Ethernet Thicknet incluye un conector conocido como «vampiro» o «perforador» para establecer la conexión física real con el núcleo Thicknet. Este conector se abre paso por la capa aislante y se pone en contacto directo con el núcleo de conducción. La conexión desde el transceiver a la tarjeta de red se realiza utilizando un cable de transceiver para conectar el conector del puerto de la interfaz de conexión de unidad (AUI) a la tarjeta. Un conector de puerto AUI para Thicknet también recibe el nombre de conector Digital Intel Xerox (DIX) (nombre dado por las tres compañías que lo desarrollaron y sus estándares relacionados) o como conector dB-15.



Thinnet vs. Thicknet

Como regla general, los cables más gruesos son más difíciles de manejar. El cable fino es flexible, fácil de instalar y relativamente barato. El cable grueso no se dobla fácilmente y, por tanto, es más complicado de instalar. Éste es un factor importante cuando una instalación necesita llevar el cable a través de espacios estrechos, como conductos y canales. El cable grueso es más caro que el cable fino, pero transporta la señal más lejos.



Conexión del cable coaxial
Tanto el cable Thinnet como el Thicknet utilizan un componente de conexión llamado conector BNC, para realizar las conexiones entre el cable y los equipos. Existen varios componentes importantes en la familia BNC, incluyendo los siguientes:

•El conector de cable BNC.
El conector de cable BNC está soldado, o incrustado, en el extremo de un cable.

•El conector BNC T.
Este conector conecta la tarjeta de red (NIC) del equipo con el cable de la red.

•Conector acoplador (barrel) BNC.
Este conector se utiliza para unir dos cables Thinnet para obtener uno de mayor longitud.

•Terminador BNC.
El terminador BNC cierra el extremo del cable del bus para absorber las señales perdidas.



Consideraciones sobre el cable coaxial

En la actualidad es difícil que tenga que tomar una decisión sobre cable coaxial, no obstante, considere las siguientes características del cable coaxial.

Utilice el cable coaxial si necesita un medio que pueda:

•Transmitir voz, vídeo y datos.

•Transmitir datos a distancias mayores de lo que es posible con un cableado menos caro

•Ofrecer una tecnología familiar con una seguridad de los datos aceptable

Definicion de PCM

Modulación por impulsos codificados
La modulación por impulsos codificados (MIC o PCM por sus siglas inglesas de Pulse Code Modulation) es un procedimiento de modulación utilizado para transformar una señal analógica en una secuencia de bits (señal digital), este método fue inventado por Alec Reeves en 1937. Una trama o stream PCM es una representación digital de una señal analógica en donde la magnitud de la onda analógica es tomada en intervalos uniformes (muestras), cada muestra puede tomar un conjunto finito de valores, los cuales se encuentran codificados.
Modulación
Introducción


Muestreo y cuantificación de una onda senoidal (roja) en código PCM de 4-bits
En la figura de la derecha observamos que una onda senoidal está siendo muestreada y cuantificada en PCM. Se toman las muestras a intervalos de tiempo regulares (mostrados como segmentos sobre el eje X). De cada muestra existen una serie de posibles valores (marcas sobre el eje Y). A través del proceso de muestreo la onda se transforma en código binario (representado por la altura de las barras grises), el cual puede ser fácilmente manipulado y almacenado.
En la Figura 1 se muestra la disposición de los elementos que componen un sistema que utiliza la modulación por impulsos codificados. Por razones de simplificación, sólo se representan los elementos para la transmisión de tres canales.


MIC.png
Figura 1.- Disposición de elementos en un sistema MIC
En la Figura 2 tenemos las formas de onda en distintos puntos del sistema anteriormente representado
MIC señal.png
Figura 2.- Formas de onda en diversos puntos de un sistema MIC
Las funciones de las distintas etapas de las que consta el sistema se detallan a continuación.
Muestreo
Consiste en tomar muestras (medidas) del valor de la señal n veces por segundo, con lo que tendrán n niveles de tensión en un segundo.
Así, cuando en el sistema de la Figura 1 aplicamos en las entradas de canal las señales (a), (b) y (c) (Figura 2), después del muestreo obtenemos la forma de onda.
Para un canal telefónico de voz es suficiente tomar 8.000 muestras por segundo, o, lo que es lo mismo, una muestra cada 125 μseg. Esto es así porque, de acuerdo con el teorema de muestreo, si se toman muestras de una señal eléctrica continua a intervalos regulares y con una frecuencia doble a la frecuencia máxima que se quiera muestrear, dichas muestras contendrán toda la información necesaria para reconstruir la señal original.
Como en este caso tenemos una frecuencia de muestreo de 8 kHz (período 125 μseg), sería posible transmitir hasta 4 kHz, suficiente por tanto para el canal telefónico de voz, donde la frecuencia más alta transmitida es de 3,4 kHz.
El tiempo de separación entre muestras (125 μseg) podría ser destinado al muestreo de otros canales mediante el procedimiento de multiplexación por división de tiempo (TDM).
Cuantificación
Por eso en la cuantificación se asigna un determinado valor discreto a cada uno de los niveles de tensión obtenidos en el muestreo. Como las muestras pueden tener un infinito número de valores en la gama de intensidad de la voz, gama que en un canal telefónico es de aproximadamente 60 dB, o, lo que es lo mismo, una relación de tensión de 1000:1, con el fin de simplificar el proceso, lo que se hace es aproximar al valor más cercano de una serie de valores predeterminados.
Codificación
En la codificación, a cada nivel de cuantificación se le asigna un código binario distinto, con lo cual ya tenemos la señal codificada y lista para ser transmitida. La forma de una onda sería la indicada como (f) en la Figura 2.F
En telefonía, la señal analógica vocal con un ancho de banda de 4KHz se convierte en una señal digital de 1024 Kbps. En telefonía pública se suele utilizar transmisión plesiócrona, donde, si se usa un E1, podrían intercalarse otras 31 señales adicionales. Se transmiten, así, 32x64000 = 2.048.000 bps.
Recuperación de la señal analógica
En la recuperación se realiza un proceso inverso, con lo que la señal que se recompone se parecerá mucho a las originales (a), (b) y (c), si bien durante el proceso de cuantificación, debido al redondeo de las muestras a los valores cuánticos, se produce una distorsión conocida como ruido de cuantificación. En los sistemas normalizados, los intervalos de cuantificación han sido elegidos de tal forma que se minimiza al máximo esta distorsión, con lo que las señales recuperadas son una imagen casi exacta de las originales. Dentro de la recuperación de la señal, ya no se asignan intervalos de cuantificación en lugar de ello son niveles, equivalentes al punto medio del intervalo IC en el que se encuentra la muestra normalizada (Aclaración de WDLC).
Historia
En la historia de las comunicaciones eléctricas, la primera razón para muestrear una señal era poder intercalar muestras de diferentes orígenes telegráficos y enviarlas por un único cable telegráfico. La multiplexación por división de tiempo telegráfica fue lograda desde 1853, por el inventor estadounidense M.B. Farmer. El ingeniero eléctrico W.M. Miner, en 1903, usó un conmutador electromecánico para la multiplexación por tiempo de diversas señales telegráficas y también aplicó esta tecnología a la telefonía. Obtuvo conversaciones inteligibles de canales muestreados a una tasa sobre 3500 - 4300 Hz, bajo esta era insatisfactoria. Esto era TDM, pero modulación por amplitud de pulsos (en inglés: PAM) en vez de MIC. En 1926, Paul M. Rainey, de Western Electric, patentó una máquina de facsímiles que transmitía su señal usando MIC de 5 bits, codificados por un convertidor análogo-digital optomecánico. La máquina no llegó a producción masiva. El ingeniero británico Alec Reeves, sin estar al tanto de este trabajo previo, concibió el uso de MIC para las comunicaciones de voz en 1937, mientras trabajaba para la International Telephone and Telegraph en Francia. Él describió la teoría y sus ventajas, pero no redundó en usos prácticos. Reeves solicitó una patente en Francia en 1938, y su patente en EE.UU se le otorgó en 1943. La primera transmisión de voz por técnicas digitales fue usando el equipamiento de codificación y cifrado SIGSALY, utilizado para comunicaciones de alto nivel aliadas durante la Segunda Guerra Mundial, en 1943. Ese año, los investigadores de Bell Labs que diseñaron SIGSALY se dieron cuenta de que el uso de MIC había sido ya propuesto por Alec Reeves. En 1949, Ferranti Canadá construyó un sistema de radio con MIC que fue capaz de transmitir datos de radar digitalizados sobre largas distancias para el DATAR de la marina canadiense. (REF) La MIC en los años 1950 usaba, para codificar, un tubo de rayos catódicos con una malla perforada. Tal como en un osciloscopio, el haz era barrido horizontalmente a una tasa de muestreo mientras la deflexión vertical era controlada por la señal análoga de entrada, haciendo que el haz pasara a través de porciones altas o bajas de la malla. La malla interrumpía el haz, produciendo variaciones de corriente en código binario. Esta malla fue perforada para producir señales binarias en código Gray antes que binario natural. MIC fue usado en Japón por Denon en 1972 para la masterización y producción de grabaciones fonográficas, usando un grabador de cintas de formato Quadruplex de 2 pulgadas para su transporte, el cual no llegó a ser desarrollado como producto comercial.

Graham Bell.


"Nunca andes por el camino trazado, pues él te conduce únicamente hacia donde los otros fueron.” (Alexander Graham Bell)

Alexander Graham Bell

Edimburgo, Reino Unido, 1847-Beinn Bhreagh, Canadá, 1922) Científico y logopeda estadounidense de orígen escocés, inventor del teléfono. Nacido en el seno de una familia dedicada a la locución y corrección de la pronunciación, Bell fue educado junto a sus hermanos en la tradición profesional familiar. Estudió en la Royal High School de Edimburgo, y asistió a algunas clases en la Universidad de Edimburgo y el University College londinense, pero su formación fue básicamente autodidacta.
En 1864 ocupó la plaza de residente en la Weston House Academy de Elgin, donde desarrolló sus primeros estudios sobre sonido; en 1868 trabajó como asistente de su padre en Londres, ocupando su puesto tras la marcha de éste a América. La repentina muerte de su hermano mayor a causa de la tuberculosis, enfermedad que también había terminado con la vida de su hermano menor, repercutió negativamente tanto en la salud como en el estado de ánimo de Bell.
En estas circunstancias, en 1870 se trasladó a una localidad cercana a Brantford (Canadá) junto al resto de su familia, donde pronto su estado comenzó a mejorar. Un año después se instaló en Boston, donde orientó su actividad a dar a conocer el sistema de aprendizaje para sordos ideado por su padre, recogido en la obra Visible Speech (1866). Los espectaculares resultados de su trabajo pronto le granjearon una bien merecida reputación, recibiendo ofertas para dar diversas conferencias, y en 1873 fue nombrado profesor de fisiología vocal en la Universidad de Boston.

En esta época, con la entusiasta colaboración del joven mecánico Thomas Watson y el patrocinio de los padres de George Sanders y Mabel Hubbard (con quien se acabaría casando el año 1877), dos estudiantes sordos que habían recibido clases de Bell, diseñó un aparato para interconvertir el sonido en impulsos eléctricos. El invento, denominado teléfono, fue inscrito en el registro de patentes estadounidense en 1876.

En un primer momento, el teléfono levantó todo tipo de comentarios irónicos, pero al revelarse como un medio de comunicación a larga distancia viable, provocó controvertidos litigios por la comercialización de la patente. En 1880, recibió el premio Volta. El dinero obtenido con este premio lo invirtió en el desarrollo de un nuevo proyecto, el grafófono, en colaboración con Charles Sumner Tainter, uno de los primeros sistemas de grabación de sonidos conocido. Tras su muerte, acaecida en 1922, dejó como herencia dieciocho patentes a su nombre y doce más con sus colaboradores.


En un primer momento, el teléfono levantó todo tipo de comentarios irónicos, pero al revelarse como un medio de comunicación a larga distancia viable, provocó controvertidos litigios por la comercialización de la patente. En 1880, recibió el premio Volta. El dinero obtenido con este premio lo invirtió en el desarrollo de un nuevo proyecto, el grafófono, en colaboración con Charles Sumner Tainter, uno de los primeros sistemas de grabación de sonidos conocido. Tras su muerte, acaecida en 1922, dejó como herencia dieciocho patentes a su nombre y doce más con sus colaboradores.

Alexander Graham Bell falleció en Baddeck, Canadá, el 2 de agosto de 1922, dejando 18 patentes de inventos realizados por él.

Desde su invención, el teléfono se convirtió en un dispositivo prácticamente indispensable para el desarrollo de la civilización. Aunque Bell tuvo plena conciencia de lo que significaba el teléfono para la humanidad, seguramente nunca imaginó que un siglo después a través de una línea telefónica se pudiera transmitir no sólo sonidos, sino también datos e imágenes. Tampoco pudo imaginar que un día se pudiera llevar un teléfono en el bolsillo, ni que, finalmente, tal como había sido su propósito, personas sordas o mudas pudieran comunicarse entre sí o con otras personas a través de un sistema telefónico y una pantalla diseñada especialmente para ellos.

Como ironías de la historia Elisha Gray, otro inventor norteamericano, presentó en la Oficina de Patentes de Estados Unidos, unas horas después que Bell, un teléfono inventado por él, pero ya la patente se le había concedido a este último.

Sin embargo en 1849, veintisiete años antes que Bell patentara su teléfono, el italiano Antonio Meucci, trabajador del Teatro Tacón, de La Habana, Cuba, había inventado un aparato telefónico que no pudo patentar antes que el desarrollado por Bell, por no haber podido disponer de los recursos económicos que se requerían para ello.

El 15 de junio de 2002 la Cámara de Representantes de los Estados Unidos de América reconoció a Antonio Meucci como el inventor del teléfono en oposición a Bell ante las irrefutables pruebas presentadas por el congresista italo-norteameriano Vito Fossella. Meucci murió en la miseria en el año 1889 tras un continuo desgaste reclamando el reconocimiento de su invento.









"Teorema de NYQUIST"


El ingeniero sueco Harry Nyquist formuló el siguiente teorema para obtener una grabación digital de calidad:

“La frecuencia de muestreo mínima requerida para realizar una grabación digital de calidad, debe ser igual al doble de la frecuencia de audio de la señal analógica que se pretenda digitalizar y grabar”.

Este teorema recibe también el nombre de “Condición de Nyquist”.

Es decir, que la tasa de muestreo se debe realizar, al menos, al doble de la frecuencia de los sonidos más agudos que puede captar el oído humano que son 20 mil hertz por segundo (20 kHz). Por ese motivo se escogió la frecuencia de 44,1 kHz como tasa de muestreo para obtener “calidad de CD”, pues al ser un poco más del doble de 20 kHz, incluye las frecuencias más altas que el sentido del oído puede captar.

El teorema trata con el muestreo, que no debe ser confundido o asociado con la cuantificación, proceso que sigue al de muestreo en la digitalización de una señal y que, al contrario del muestreo, no es reversible (se produce una pérdida de información en el proceso de cuantificación, incluso en el caso ideal teórico, que se traduce en una distorsión conocida como error o ruido de cuantificación y que establece un límite teórico superior a la relación señal-ruido). Dicho de otro modo, desde el punto de vista del teorema, las muestras discretas de una señal son valores exactos que aún no han sufrido redondeo o truncamiento alguno sobre una precisión determinada, esto es, aún no han sido cuantificadas. El teorema demuestra que la reconstrucción exacta de una señal periódica continua en banda base a partir de sus muestras es matemáticamente posible si la señal está limitada en banda y la tasa de muestreo es superior al doble de su ancho de banda.

Desarrollado por H. Nyquist, quien afirmaba que una señal analógica puede ser reconstruída, sin error, de muestras tomadas en iguales intervalos de tiempo. La razón de muestreo debe ser igual, o mayor, al doble de su ancho de banda de la señal analógica".



La teoría del muestreo define que para una señal de ancho de banda limitado, la frecuencia de muestreo, fm, debe ser mayor que dos veces su ancho de banda [B] medida en Hertz [Hz].

fm > 2·B

Supongamos que la señal a ser digitalizada es la voz...el ancho de banda de la voz es de 4,000 Hz aproximandamente. Entonces, su razón de muestreo sera 2*B= 2*(4,000 Hz), es igual a 8000 Hz, equivalente a 8,000 muestras por segundo (1/8000). Entonces la razón de muestreo de la voz debe ser de al menos 8000 Hz, para que puede regenerarse sin error.

La frecuencia 2*B es llamada la razón de muestreo de Nyquist. La mitad de su valor, es llamada algunas veces la frecuencia de Nyquist.

El teorema de muestreo fue desarrollado en 1928 por Nyquist y probado matematicamente por Claude Shannon en 1949.

Ejemplos prácticos:

El en área de la MÚSICA, a veces es necesario convertir material analógico [en acetato, cassetes, cintas magneticas, etc] a formato digital [en CD, DVD]. Los ingenieros de sonido pueden definir el rango de frecuencia de interés.
Como resultado, los filtros analógicos son algunas veces usados para remover los componentes de frecuencias fuera del rango de interes antes de que la señal sea muestreada.

Por ejemplo, el oído humano puede detectar sonidos en el rango de frecuencias de 20 Hz a 20 KHz. De acuerdo al teorema de muestreo, uno puede muestrear la señal al menos a 40 KHz para reconstruir la señal de sonido aceptable al oísdo humano. Los componentes más arriba de 40 KHz no podrán ser detectados y podrían contaminar la señal. Estos componentes arriba de los 40 KHz son removidos a través de filtros pasa banda o filtros pasa bajas.

Algunos de las razones de muestreos utilizadas para grabar musica digital son las siguientes:

Razón de muestreo/ Frecuencia de Nyquist
22,050 kHz = 11,025 kHz (Nyquist)
24,000 kHz = 12,000 kHz
30,000 kHz = 15,000 kHz
44,100 kHz = 22,050 kHz
48,000 kHz = 24,000 kHz

Es muy importante tomar en consideración que la frecuencia más alta del material de audio será grabada. Si la frecuencia de 14,080 Hz es grabada, una razón de muestreo de 44.1 kHz deberá ser la opción elegida. 14,080 Hz cae dentro del rango de Nyquist de 44.1 kHz el cual es 22.05 kHz.

La razón de muestreo elegida determina el ancho de banda del audio de la grabadora usada. Considerando que el rango del oido es de 20 Hz a 20 kHz, una razón de muestreo de 44.1 kHz teoricamente deberá satisfacer las necesidades de audio.




 

martes, 21 de febrero de 2012

Ancho de banda de canales de Radio y T.V

AM de 540 a 1600 kHz (107 canales). Ancho de banda entre canales es de 10 kHz. (Las frecuencias portadoras deben ser múltiplos enteros de 10 kHz.).

FM de 88 a 108 MHz (100 canales), Ancho de banda entre canales es de 200 kHz, se identifican por su frecuencia portadora central y por el número del canal. Sus frecuencias centrales comienzan en 88.1 MHz y continúan sucesivamente hasta la de 107.9 MHz.


Esto se refiere al rango de frecuencias en que podemos escuchar una estación, se mide en hertz (Hz), en el caso de la radio F.M., va aproximadamente desde los 88MHz, hasta los 110MHz, esto significa que tenemos un rango, o “ancho de banda” de aproximadamente 22MHz en los que podemos sintonizar muchas estaciones y puede haber mayor selectividad.
TV
54 a 72 MHz (Canales 2 al 4)
76 a 88 MHz (Canales 5 y 6)
174 a 216 MHz (Canales 7 al 13)
# 470 a 608 MHz (Canales 14 al 36)
# 614 a 806 MHz (Canales 38 al 69)
Tabla de Equivalencias de Canales con Frecuencias empleadas en la Television de México.
Frecuencia de Canales de Television en VHF para México
Sistema M 525 líneas
Sistema N 625 líneas
CanalVideo (MHz)Audio (MHz)
255.2559.75
361.2565.75
467.2571.75
577.2581.75
683.2587.75
7175.25179.75
8181.25185.75
9187.25191.75
10193.25197.75
11199.25203.75
12205.25209.75
13211.25215.75
Frecuencia de Canales de Television en UHF para México
Sistema M 525 líneas
Sistema N 625 líneas
CanalVideo (MHz)Audio (MHz)
14471.25475.75
15477.25481.75
16483.25487.75
17489.25493.75
18495.25499.75
19501.25505.75
20507.25511.75
21513.60517.75
22519.25523.75
23525.25529.75
24531.25535.75
25537.25541.75
26543.25547.75
27549.25553.75
28555.25559.75
29561.25565.75
30567.25571.75
31573.25577.75
32579.25583.75
33585.25589.75
34591.25595.75
35597.25601.75
36603.25607.75
37609.25613.75
38615.25619.75
39621.25625.75
40627.25631.75
41633.25637.75
42639.25643.75
43645.25649.75
44651.25655.75
45657.25661.75
46663.25667.75
47669.25673.75
48675.25679.75
49681.25685.75
50687.25691.75
51693.25697.75
52699.25703.75
53705.25709.75
54711.25715.75
55717.25721.75
56723.25727.75
57729.25733.75
58735.25739.75
59741.25745.75
60747.25751.75
61753.25757.75
62759.25763.75
63765.25769.75
64771.25775.75
65777.25781.75
66783.25787.75
67789.25793.75
68795.25799.75
69801.25805.75
70807.25811.75
71813.25817.75
72819.25823.75
73825.25829.75
74831.25835.75
75837.25841.75
76843.25847.75
77849.25853.75
78855.25859.75
79861.25865.75
80867.25871.75
81873.25877.75
82879.25883.75
83885.25889.75

La historia de la Radio


UNA MIRADA RETROSPECTIVA
Con el telégrafo y el teléfono, el hombre ya podía comunicarse a grandes distancias, incluso a través de los mares gracias a los cables submarinos, pero solo entre los puntos en los que llegaban estos cables. Pero aún quedaban incomunicados los barcos, vehículos, zonas poco pobladas, etc.

La superación a estas dificultades empezó a ser posible con una serie de descubrimientos:

Durante el desarrollo de la electricidad, habían aparecido varias teorías para explicar muchas clases de fenómenos eléctricos, se creia al principio que la acción eléctrica ocurría a distancia sobre los distintos cuerpos que así podían experimentarla.
Pero el descubrimiento de la corriente eléctrica motivó que surgan dudas sobre aquella acción misteriosa. Faraday no creía en esa acción adistancia, y en 1835, al escribir sobre una forma perfeccionada de batería voltaica, observó que la corriente eléctrica se propagaba como si existiesen partículas discretas de electricidad.

Las ideas de Faraday no cayeron en el olvido y su compatriota Maxwell las recogió treinta años después, para traducirlas al lenguaje matemático, sacando de ellas las consecuencias más trascendentales.

James Clerk Maxwell en 1867 presentaba su teoría electromagnética (Electricidad y Magnetismo) a la Real Sociedad de Londres. Esta teoría, obtenida por cálculo matemático puro, predecía la posibilidad de crear ondas electromagnéticas y su propagación en el espacio. Estas ondas se propagarían por el espacio a la velocidad de 300 mil kilómetros por segundo.

Las primeras tentativas para confirmar esta teoría fueron realizadas por el profesor Fitzgerald, de Dublín, pero no dieron resultados prácticos hasta que, el físico alemán Hertz, que desconocía las investigaciones de Fitzgerald, emprendió la misma tarea.

El alemán Heinrich Hertz en 1887, confirmó experimentalmente la teoría de Maxwel, radiando y estudiando las ondas electromagnéticas con su oscilador y un resonador, realizó la primera transmisión sin hilos, de lo que a partir de entonces se denominarían en su honor ondas hertzianas.

Este experimento sirvió para confirmar las ideas de Maxwell y dejó entrever la posibilidad de producir ondas eléctricas a distancia y captarlas mediante un aparato adecuado. Fue, pues, la primera tentativa de radiocomunicación por medio de las ondas electromagnéticas, y el primer resultado práctico del que había de germinar toda la serie de experimentos.
El descubrimiento de Hertz, aunque permitió comprobar la existencia de las ondas electromagnéticas y sus propiedades parcidas a las de las ondas luminosas, confirmando así brillantemente la teoría de Maxwell, no tuvo resultados prácticos inmediatos, porque el resonador, que revelaba la presencia de las ondas, únicamente podía funcionar a muy corta distancia del aparato que las producía.

En 1884 Calzecchi Onesti descubrió la conductibilidad eléctrica que toman las limaduras de hierro en presencia de las ondas electromagnéticas, o sea de las ondas hertzianas

El francés Branly, en 1890, construyo su primitivo choesor (cohesor), que permitía comprobar la presencia de ondas radiadas, es decir de detectarlas, y que sería utilizado por todos los investigadores que entonces querían la comunicación sin hilos (sin cables).

El cohesor de Branly consta de un tubo de cristal dentro del cual se encuentran limaduras de hierro, algo apretadas, entre dos polos metálicos que se comunican con una pila eléctrica. La resistencia de las limaduras es demasiado elevada para que pase la corriente de la pila, pero en presencia de una onda hertziana dicha conductibilidad aumenta y la corriente que pasa por el aparato puede notarse haciendo sonar un timbre eléctrico.

Con el aparato de Branly podían captarse las ondas hertzianas a distancias mucho más considerables que con el resonador de Hertz, pero, de todos modos, no podían obtenerse todavía aplicaciones prácticas. El ruso Popov creyó encontrar en el tubo de Branly un aparato sensible para revelar la marcha de las tempestades, pues las descargas eléctricas de las nubes tempestuosas provocan la formación de ondas, capaces de ser reveladas por el cohesor.
El ruso Popov (1859-1905) encontró el mejor sistema para radiar (enviar) y captar las ondas: la antena, constituida por hilo metálico.

Después de perfeccionar este aparato, Popov añadió al sistema receptor un hilo metálico extendido en sentido vertical, para que, al elevarse en la atmósfera, pudiese captar mejor las oscilaciones eléctricas. Este hilo estaba unido por uno de sus extremos a uno de los polos del cohesor, mientras que el otro extremo comunicaba con tierra y así cualquier diferencia de potencial que se estableciese entre dichos polos, provocada por el paso de una onda electromagnética procedente de las nubes tempestuosas, hacía sonar el timbre del aparato, cuyo repiqueteo más o menos frecuente daba idea de la marcha de la tempestad.
De este modo nació la primera antena, llamada así porque, para sostener el hilo metálico ideado por Popov, debía emplearse un soporte de aspecto parecido a los mástiles o antenas de los buques.

El 24 de marzo de 1896 realizo la primera comunicación de señales sin hilos.

Estas primeras transmisiones estaban constituidas por simples impulsos, obtenidos mediante poderosas descargas eléctricas de corriente almacenadas en condensadores o botellas de Leyden. Una espira de alambre conductor, situada a pocos metros de la descarga, producía una descarga menor entre sus extremos abiertos.

El oscilador de Hertz, el detector de Branly y la antena de Popov eran, pues, los tres elementos indispensables para establecer un sistema de radiocomunicación, pero era necesario también constituir un conjunto que pudiese funcionar con seguridad para tener aplicaciones comerciales.
Nadie había podido conseguirlo, hasta que en 1895 Marconi realizó experimentos definitivos que le proporcionaron el título de inventor de la radiocomunicación.

Este fenómeno que empezó a mostrar la resonancia eléctrica fue estudiada por Marconi, el cual en Bolonia (Italia) en 1896 y con sólo 20 años de edad conseguía sus primeros comunicados prácticos.

Empleando un alambre vertical o "antena" en vez de anillos cortados y empleando un "detector" o aparato que permitía descubrir señales muy débiles, pronto logró establecer comunicación hasta distancias de 2400 m.

Paulatinamente fué aumentando el alcance de sus transmisiones, hasta que en 1896 solicitó y obtubo la primera patente de un sistema de telegrafía inalámbrica.

Guillermo Marconi en la época de sus primeros
experimentos y su primitivo emisor de chispas.

La longitud de onda utilizada estaba situada por encima de 200 metros, lo que obligaba a utilizar antenas de colosales dimensiones. El receptor basaba su funcionamiento en el denominado cohesor. Brandley y Lodge fueron dos de sus principales perfeccionadores. En esencia, el cohesor estaba constituido por un tubo de vidrio, lleno de limaduras de hierro, el cual en presencia de una señal de alta frecuencia, procedente de la antena, se volvía conductor y permitía el paso de una corriente que accionaba un timbre. Cuando desaparecía la corriente el cohesor seguía conduciendo, por lo que debía dársele un golpe para que se desactivara. Estos detalles dan una idea de las dificultades con que se encontraban los investigadores de aquel entonces.

Uno de los receptores utilizados por Marconi, podemos apreciar la
"antena", el "cohesor", los "audífonos" y las pilas.


En 1897, el inglés O.J. Lodge inventó el sistema de sintonía, que permite utilizar el mismo receptor para recibir diferentes emisiones.

En 1897, empleando un transmisor formado por una bobina de inducción grande y elevando las antenas transmisora y receptora con ayuda de papalotes (cometas), aumentó el alcance del equipo a 14,5 Km. También demostró que la transmisión podía ser sobre el mar, estableciendo la comunicación entre dos barcos de la marina de guerra italiana, a distancias de 19 Km la figura anterior nos da una idea de su receptor.

El primer contacto por radio en Francia tuvo lugar en 1898 entre la Torre Eiffel y el Pantheon (4 Km.), en París.

En 1899 nuevamente el investigador e inventor Guillermo Marconi logró enviar un mensaje por radio a través del Canal de la Mancha uniendo Dover con Wimereux (46 Km.).

Es en este año 1899, que ocurrió la primera demostración del valor de las comunicaciones por radio para dar mas seguridad a los viajes en el mar, cuando la tripulación del barco "R. F. Mathews" pudo salvarse despues del choque del barco con un faro, gracias a la llamada de auxilio por radiotelegrafía.

Antena transmisora instalada por Marconi en Poldhu

Pero en realidad se puede decir que la Era de la Telegrafía sin Hilos comenzó un crudo día, 12 de diciembre de 1901, a las 12:30 p.m. y después de elevar la antena receptora con globos y papalotes hasta 120 mts. de altura, en unos barracones abandonados en San Juan de Terranova (Canadá) donde Marconi ayudado por los Srs. Paget y Kemp, consiguió captar una serie de tres puntos, la letra S del código Morse, una señal que acababa de recorrer los 3.600 kilómetros que separaban a Marconi de (Poldhu) Cornwall, en Gran Bretaña (Inglaterra). Esta señal fue la culminación de muchos años de experimentación.

Después del suceso transatlántico de Marconi en el año 1901, en los Estados Unidos se registra un desarrollo vertiginoso en la autoconstrucción y experimentación de aparatos TSF (telegrafía sin hilos).

Hacia el año de 1900 se empezaron a utilizar los detectores de CRISTAL DE GALENA para la detección en sustitución del cohesor Branly, la galena era mucho mas sensible, pero aun inestable.

El detector de cristal de galena, permite el paso de la corriente en una sola
dirección, precursora de los semiconductores.

En 1904, el inglés J.A. Fleming aportó a la radio el primer tipo de válvula de vacío, el diodo, que aparte de otras aplicaciones permitía sustituir con ventaja al engorroso detector de galena, el cual se siguió utilzando en pequeños receptores hasta los años cincuenta.

Válvula de Fleming usada como detector

Con el invento en 1905 de la lámpara triodo (llamada también "audion") por el americano -Lee De Forest-, ya se podían amplificar las señales eléctricas utilizadas en radio y generar ondas que no fueran chispas como hasta entonces.

Válvula "Audion" inventada por De Forest en 1905

Con tensiones de sólo unas centenas de voltios era posible obtener una señal de transmisión continua o sostenida, lo que anuló rápidamente los transmisores de chispas. Pero es más, la señal continua fue fácilmente modulada por micrófonos de carbón, del tipo que aún se utiliza comúnmente en los teléfonos hoy día, y permitió la transmisión de voz.

Fue este mismo Dr. Lee DeForest que dio inicio a las primeras emisiones de radio de música y voz , usando el bulbo de su invención para generar ondas electromagnéticas, en lugar de las chispas. Sus transmisiones desde su casa en California fueron mas bien experimentales hasta que finalmente, en 1920, la Westinhouse Electric and Manufacturing Co., estableció en Pittsburgh la primera estación radiofusora comercial: la bien conocida "KDKA".

Con ello la radiotelegrafía dio paso a la radiotelefonía, que habría un inmenso campo de posibilidades a la gran aventura humana en las comunicaciones

Mecanismo de transformar energia acustica en energia electrica y de energia electrica a energia acustica"

Los transductores son dispositivos que transforman un tipo de energía en otra. Los micrófonos y altavoces son transductores acústicos que transforman la energía acústica en energía eléctrica, o viceversa.

El altavoz convierte energía eléctrica en energía acústica. Un micrófono es un dispositivo que capta ondas sonoras de una determinada energía acústica y las transforma en una corriente eléctrica que reproduce

Las características de la onda sonora original. En primer lugar, una lámina elástica fina, llamada diafragma, capta las variaciones de presión del medio de transmisión y las convierte en vibraciones mecánicas. A continuación, las vibraciones mecánicas del diafragma generan una señal eléctrica de voltaje e intensidad proporcionales.9

 Un altavoz funciona a la inversa, es decir, convierte energía eléctrica en energía acústica. En primer lugar, la señal eléctrica de entrada produce fuerzas electromagnéticas que provocan el movimiento de la membrana del altavoz. Ese movimiento mueve las partículas en contacto con la membrana y produce ondas de presión en el aire o el medio de transmisión que lo rodea.10

 La potencia eléctrica del altavoz condiciona su potencia sonora y la energía acústica transmitida al medio. De ella también depende la cantidad de aire que se pone en movimiento y las diferencias de presión entre unos puntos y otros. La frecuencia de la señal eléctrica determina la frecuencia o tono del sonido producido.
¿COMO FUNCIONA UN MICROFONO?
Un, dos… ¿Se me escucha?... Sssí… Nnno…

Son las palabras que siempre repetimos delante de un micrófono para comprobar si funciona. El micrófono, ese mágico y misterioso elemento, es uno de los equipos más importantes en una emisora de radio o estudio de producción. Es el encargado de recoger y entregar tu voz a los que están detrás del receptor. Con él, empieza todo.

Un micrófono es un transductor, es decir, transforma una energía (acústica) en otra (eléctrica). Inversamente a lo que hace un altavoz, que transforma la eléctrica en sonido. Aunque hay muchas clases de micrófonos, el funcionamiento de todos es muy similar.

Nuestra voz produce una serie de vibraciones que ejercen presión sobre un diafragma que se encuentra dentro del micrófono, una membrana similar al tímpano de nuestros oídos. Esta membrana está unida a un dispositivo que, dependiendo del tipo de micrófono, puede ser una bobina, un cristal, partículas de carbón, un condensador, etc. Y a su vez, este mecanismo es capaz de transformar estas variaciones sonoras en electricidad.
PARTES DE UN MICROFONO.
DiafragmaEs la parte más delicada de un micrófono. En algunos lugares también recibe el nombre de pastilla, aunque generalmente este término se refiere al dispositivo que capta las vibraciones en los instrumentos como, por ejemplo, en una guitarra eléctrica. El diafragma es una membrana que recibe las vibraciones de nuestra voz y está unido al sistema que transforma estas ondas en electricidad.

Dispositivo transductor
Esta cápsula microfónica puede estar construida de diferentes maneras y, dependiendo del tipo de transductor, podemos clasificar a los micrófonos como dinámicos, de condensador, de carbón, piezoeléctricos… Se encarga de convertir los sonidos en electricidad (audio).

Rejilla Protege el diafragma. Evita tanto los golpes de sonido (las “p” y las “b”) así como los físicos que sufra por alguna caída.

CarcasaEs el recipiente donde colocamos los componentes del micrófono. En los de mano, que son los más comunes, esta carcasa es de metales poco pesados, ligeros de portar pero resistentes a la hora de proteger el dispositivo transductor.

Conector de salida
A través del conector, llevamos la señal eléctrica a la consola. Por lo general son conectores XLR macho. En los modelos sin cables o inalámbricos, el conector de salida se cambia por un pequeño transmisor de radiofrecuencia que envía la señal a través de ondas electromagnéticas.